Members
Dr. Jordan Tsigarides
Working in:
- Bioelectronics and sensor systems
- Digital Health
- Neurofeedback
- Virtual reality
- Data science and biomarkers
My work focusses on the development and use of virtual reality interventions for the management of chronic pain. This includes research into brain-computer interfaces, personalised approaches using sensor-based technologies (eye tracking, EEG, ECG etc), and machine learning.
Prof. Erika Spaich
Working in:
- Bioelectronics and sensor systems
- Prosthetics and robotics
- Biomechanics
- Digital Health
- Peripheral stimulation
My research area of interest is in the field of neurorehabilitation technologies for supporting people with neurological conditions or injuries to learn, re-learn, and recover motor functions, with special focus on gait, postural control, and upper-limb function.
Focus areas: functional electrical stimulation systems and rehabilitation robots to support gait rehabilitation and grasping of tetraplegic and hemiparetic patients, assistive technologies, assessment technologies, gaming technologies, and their combinations. Also, mechanisms that result on sensory-motor impairments and recovery after injury, including central pattern generators and neural plasticity.
Dr. Carlos Monteiro
Visit websiteProf. Mark Johnson
Working in:
- Prosthetics and robotics
- Non-invasive brain stimulation
- Peripheral stimulation
- Virtual reality
- Other
I have conducted research on pain and its management for over 30 years. Areas of interest include response to electrophysical agents, individuality and pain, perceptual embodiment, epidemiology, pain education, pain and art, community-support-programmes for pain, and painogencity (health promotion). Methodologies include evidence syntheses (e.g., Cochrane reviews, meta-ethnography), human response to stimuli (quantitative sensory testing) and clinical trials. I have a long-standing interest in transcutaneous electrical nerve stimulation (TENS) and deliver a distance learning MSc module on Foundation Neuromodulation (implantable devices).
Prof. Stephen Jackson
Working in:
- Animal models
- Bioelectronics and sensor systems
- Non-invasive brain stimulation
- Peripheral stimulation
- Neurofeedback
- Data science and biomarkers
- Other
My research focuses on understanding the brain mechanisms that underpin human sensorimotor function. My research utilises a range of approaches, including state-of-the-art MR imaging and spectroscopy, magnetoencephalography, and non-invasive brain stimulation to investigate the pathophysiology of common mental/brain health conditions. A key focus is developing the next generation of novel therapeutic approaches for mental/brain health conditions based on wearable technology and non-invasive brain stimulation. To this end I am a founding Non-Executive Director, and Chief Scientific Officer, of Neurotherapeutics Ltd.
Dr Finlay Walton
Working in:
- Bioelectronics and sensor systems
- Invasive recording systems
- Optogenetic systems
I am currently a senior postdoctoral researcher at the University of Glasgow. My research involves designing, simulating, fabricating, and testing neuromodulation devices with a diverse range of modalities, including optogenetic, magnetic, and thermal. I go from using state-of-the-art software to simulate device performance in full human body models, to cleanroom nanofabrication, and in-vivo testing of device prototypes with a broad range of talented collaborators in engineering, neuroscience, and computing science. My latest research proposal involves designing the first optogenetic brain implant for chronic pain treatment.