Members
Yusuf Ahmed
Working in:
- Bioelectronics and sensor systems
- Prosthetics and robotics
- Biomechanics
- Digital Health
- Non-invasive brain stimulation
- Neurofeedback
- Virtual reality
- Data science and biomarkers
Neurotech for cognitive rehabilitation and age-technology. Neuro-rehabilitation engineering, signal processing and control
Rahat Jahangir Rony
Working in:
- Bioelectronics and sensor systems
- Digital Health
I am doing research in HCI. My research goal includes exploring the opportunities of technologies for upper limb rehabilitation for stroke patients at home in low-resource settings.
Jen Davies
Working in:
- Bioelectronics and sensor systems
- Biomechanics
- Digital Health
- Non-invasive brain stimulation
- Peripheral stimulation
- Virtual reality
I study the spinal and supraspinal neural control of dynamic movements, and the impact of pain, stress or anxiety, and musculoskeletal or neurological disorders on this control. To do this I use techniques such as transcranial magnetic stimulation, surface electromyography (including high-density arrays), intramuscular electromyography, peripheral nerve stimulation and motion capture.
Amy Romaniuk
Working in:
- Bioelectronics and sensor systems
- Prosthetics and robotics
- Biomechanics
- Pumps and infusion devices
- Digital Health
- Non-invasive brain stimulation
- Invasive brain or spinal stimulation
- Peripheral stimulation
- Neurofeedback
- Invasive recording systems
- Virtual reality
- Data science and biomarkers
- Optogenetic systems
- Other
Tony Pickering
Working in:
- Animal models
- Bioelectronics and sensor systems
- Invasive brain or spinal stimulation
- Peripheral stimulation
- Invasive recording systems
- Data science and biomarkers
- Optogenetic systems
Pain and Autonomic regulation. Basic neurobiology to experimental medicine and clinical trials.
Dr. Suyi Zhang
Working in:
- Computational and dynamical brain models
- Bioelectronics and sensor systems
- Digital Health
- Virtual reality
- Data science and biomarkers
Developing non-invasive brain-computer interfaces with optical modalities, creating real time decoding and signal processing BCI software, building AI models to decode human intention and speech
Dr. Jordan Tsigarides
Working in:
- Bioelectronics and sensor systems
- Digital Health
- Neurofeedback
- Virtual reality
- Data science and biomarkers
My work focusses on the development and use of virtual reality interventions for the management of chronic pain. This includes research into brain-computer interfaces, personalised approaches using sensor-based technologies (eye tracking, EEG, ECG etc), and machine learning.
Prof. Erika Spaich
Working in:
- Bioelectronics and sensor systems
- Prosthetics and robotics
- Biomechanics
- Digital Health
- Peripheral stimulation
My research area of interest is in the field of neurorehabilitation technologies for supporting people with neurological conditions or injuries to learn, re-learn, and recover motor functions, with special focus on gait, postural control, and upper-limb function.
Focus areas: functional electrical stimulation systems and rehabilitation robots to support gait rehabilitation and grasping of tetraplegic and hemiparetic patients, assistive technologies, assessment technologies, gaming technologies, and their combinations. Also, mechanisms that result on sensory-motor impairments and recovery after injury, including central pattern generators and neural plasticity.
Prof. Stephen Jackson
Working in:
- Animal models
- Bioelectronics and sensor systems
- Non-invasive brain stimulation
- Peripheral stimulation
- Neurofeedback
- Data science and biomarkers
- Other
My research focuses on understanding the brain mechanisms that underpin human sensorimotor function. My research utilises a range of approaches, including state-of-the-art MR imaging and spectroscopy, magnetoencephalography, and non-invasive brain stimulation to investigate the pathophysiology of common mental/brain health conditions. A key focus is developing the next generation of novel therapeutic approaches for mental/brain health conditions based on wearable technology and non-invasive brain stimulation. To this end I am a founding Non-Executive Director, and Chief Scientific Officer, of Neurotherapeutics Ltd.